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The influence of slow time variations of the Brunt-VaisLlG frequency N upon the 
energy of internal gravity waves is investigated. It is found that, when time variations 
in N are produced by a mean deformation field (reversible mean state), the wave energy 
can vary in either direct or inverse proportion, depending on the wavenumber orienta- 
tion. When N changes owing to a certain type of irreversible process, the wave energy 
varies with only inverse proportionality. 

The nocturnal planetary boundary layer (NPBL) provides an example where 
N = N ( z , t ) .  The full initial/boundary-value problem for an N ( z , t )  similar to the 
climatological mean for the NPBL is solved. 

1. Introduction 

the Brunt-VGisala frequency 
The fundamental parameter governing the propagation of internal gravity waves is 

where 8 is the potential temperature. This quantity is predominantly a function of the 
altitude z in most geophysical applications. However, situations exist where N has a 
large temporal variation, and the consequences of this for internal gravity waves may 
be important. For example, Orlanski (1973) found that the diurnal stratification cycle 
of the planetary boundary layer could parametrically excite internal gravity waves of 
from small to mesoscale. McEwan & Robinson (1975) studied the wave-wave inter- 
action process by considering the response of small-scale internal gravity waves to the 
periodic changes in stratification associated with a larger-scale wave motion. 

Attention was confined in these studies to the long-time or cumulative effect of the 
periodic N 2  variation which produces instability. However, the local effect of a time- 
varying stratification can also add to (or subtract from) the wave energy without evok- 
ing the instability mechanism. The physical mechanism involved is in some respects 
sisilar to the effect produced on the energy of a string oscillation when the tension is 
altered. 

A general theory for wave trains in slowly varying media was given by Bretherton 
& Garrett (1968); it was proved that the quantity termed the wave action is conserved. 
This result was demonstrated to hold in particular for internal gravity waves by 
Garrett (1968). Since the wave action is the local energy density E divided by the local 
Doppler-shifted frequency and this frequency is proportional to  N ,  one might suspect 

t Present address : National Center for Atmospheric Research, Boulder, Colorado 80307. 
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that the behaviour of E as a functional of N is easily obtained. However, temporal 
variations of N are associated with a mean deformation field (in a conservative system) 
which also alters E .  In Q 2, Garrett’s analysis is reconsidered and the wave energy equa- 
tion is cast into a form where E[N(t)]  may be obtained given only the orientation of the 
wavenumber vector. 

When N(t )  is produced by a certain type of irreversible process rather than a mean 
deformation field, the result concerning E[N( t ) ]  is very different. It is proved in $2 
that the quantity o E  is conserved in this case. One particular application of this result 
is to the nocturnal planetary boundary layer (NPBL), where the stratification builds 
up from zero after sunset. Some climatological averages are discussed briefly in Q 3 and 
the solution to the full initiallboundary-value problem for internal gravity waves for 
an N2(z,  t )  similar to that observed is presented in $ 4. 

2. The wave energy equation 
The derivation presented is the same as Garrett’s except that here a diabatic 

heating (cooling) term is included in the mean state. The inclusion of this effect allows 
N to vary in response to not only mean deformation but also irreversible heat transfer. 

The inviscid Boussinesq equations of motion are (see, for example, Batchelor 
1953) 

(2.2) 
and Du/Dt = Q, (2.3) 
where u = (u, v, w) is the velocity vector, u = (0 - e,)/e, is the deviation of the poten- 
tial temperature from that of an adiabatic reference atmosphere, 4 = ( P  - Pa) /pa is the 
modified pressure and Q is the diabatic heating. The usual definitions 

DIDt = a/at + u.  V and V = a/a&, + a/ayi3y + alazi?, 
apply. The linearization of (2.1)-(2.3) is achieved by first partitioning u, u and 4 into a 
mean field and a perturbation therefrom. That is, 

(2.4) 
where all variables depend on x, y, z and t except for W t  and 2, which are allowed to 
vary only with z and t .  In  this analysis attention is restricted to the situation where the 
diabatic heating is uniform over a surface of constant height. This is possible in flows 
where the major heat-transport mechanism is small-scale turbulent convection. Given 
a stable stratification, the intensity of the turbulence is governed by the ambient wind 
shear, which, in turn, is determined by some influences which must be considered 
‘external’ to (2.1)-(2.3). Our hypothesis is that, while displaced fluid parcels retain 
their potential temperature, they acquire the local turbulent intensity a t  the height to 
which they move. Therefore the heating rate Q is an a priori specified function of z and 
t which is unaffected by wave motion. In  a more general context, a perturbation heating 
term should be included and the result concerning E[N(t)]  will depend on the mechanism 
of heat transfer. A detailed analysis of these effects will be found in a forthcoming 
articleby Rotunno &Bretherton. Equation(2.4)issubstituted into (2.1)-(2.3) anda set 
of equations involving only the mean quantities and another set involving both mean 

v.u = 0 

(u, v, w, c, 4) = (U, v, w, 2, a) + (u‘, v’, w’, u’, #’), 

t Garrett (1968) argued that and aW/ay enter only at higher order. 
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and perturbation quantities emerge. The mean quantities are governed by (2.1)-(2.3) 
with u, CT and (P replaced by U, C and @. The perturbation equations are (dropping 
primes) 

-+u.vu DO U = -- a(P Dt ax 9 

Do - v +u .vv  = -- a$ 
Dt aY ' 

(2.9) and v.u  = 0, 

where Do/Dt = alat + u apx + V a/ay + W alat. 
The asymptotic solutions to (2.5)-(2.9) are obtained via the WXB approximation, 

in which all derivatives of U and N are neglected. The plane-wave solutions 

{u, r,  $1 = Re {uo, go,  (Po} exp W X ,  t )  

will satisfy (2.6)-( 2.9) provided that the dispersion relation 
N(k2 + 12)3 

(k2  + Z2 + m2) 4 w-U.k = 0 = 

(2.10) 

(2.11) 

is satisfied. The quantities k, I, m and a are PZ, &, Pz and -Pt, respectively. The space- 
time dependence of these quantities is the subject of kinematic wave theory (see, for 
example, Whitham 1974, p. 380). The relationships among the amplitudes are 

and 

(2.12) 

The local energy density is defined as 

E = @+$g2G/N2 = & I U ~ J ~ + @ ~ U ~ J ~ / N ~ ,  (2.13) 

where the bar represents a local period average. The second-order correlations will be 
needed when the wave energy equation is considered and are given in terms of E as 

$U = GE, 
- 

I 
(2.14) 

where 8 is the Doppler-shifted group velocity Xjlak, with components (el, eZ, &). 
21-2 
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The energy equation is obtained by multiplying ( 2 . 5 ) ,  ( 2 . 6 )  and (2 .7)  by u, 2, and 
w, respectively, then adding the resulting equations to obtain 

Do u2 a ui +u.u.-+V.($hu) = wug, B T  v x j  (2 .15)  

where ( 2 . 9 )  has been used. The term on the right-hand side of (2 .15)  may be evaluated 
by multiplying (2 .8 )  by cg21N2: 

Hence the perturbation energy equation is 

g2u2 1 DON 
- - - 0. 

(2 .16)  

(2 .17)  

The local period average of (2 .17)  is taken, and using the definition (2 .13)  and relations 
(2 .14) ,  the result is 

dE Ek .C.aq  aW E D  N 
- + EV.c + A 9  - + E - +- 0 = 0, at o axj az N Dt (2 .18)  

where dldt  = a/at+c.V, where c is the group velocity. The first term is the rate of 
change of wave energy along a ray path, the second term represents the effect of con- 
verging (diverging) ray paths, the third and fourth terms are the effects of the working 
of the Reynolds stresses on the mean flow to extract (or add to) the energy of the basic 
state U and the last term is the effect of variable stability. Note that the last two terms 
and the deformation component of the third term cannot be independently specified 
i f & = O .  

Consider €or the moment the situation Q = 0. The zeroth-order buoyancy equation 

DZ/Dt = 0 (2 .19)  
is 

and it follows that i D,N l a w  zDt=--- 2 az * 

Combination of (2 .18)  and (2 .20 )  verifies? that the conservation law 

&)+v.(c;) a~ = 0 

(2 .20)  

(2.21) 

applies for internal gravity waves and this was pointed out by Garrett. Remember 
that the goal of this section is to obtain E as a functional of N for both reversibIe and 
irreversible mean states. The Reynolds-stress term in (2 .18 )  may be split into a part 
which depends on the mean shear and a part which depends on the mean deformation : 
it is 

t After the kinematical result 
1 d& kjzt aU, 1 D o n  +- - & dt $ ax, N Dt 
-- =--- 

haa been applied. See Garrett’s equation (1.10). 
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The last two terms may be combined since kE, = - mt, and aU/ax = - awl&. Using 
(2.20) the energy equation (2.18) becomes 

dE E M  au (mt;",z 1 ) - o = o .  E D N  
N Dt - + B V . C + - + - +  -- dt w az (2.22) 

If a is defined as the angle between the wavenumber vector k and the horizontal, then 
the last term of (2.22) is 

E D O N  (4sin2a-1)- - N Dt * 
(2.23) 

The behaviour of E as a functional of N is as follows. If sin a < t ,  then increases 
(decreases) in N produce increases (decreases) in E .  This implies that higher-frequency 
motion may be amplified, i.e. since (3IN = cos a then sin a < Q implies that (3lN > *43. 
If sin a > Q, then the reverse is true. 

When Q + 0,  the results concerning the behaviour of E as a functional of N are very 
different. Consider a mean flow with zero deformation, i.e. W = 0, U = U ( z ) ,  P = V(z).  
Then (2.18) becomes 

dE 
dt - + EV.C+-  0,  ( 2 . 2 4 ~ )  

where N now changes solely in response to Q. Now when N increases (decreases), E 
decreases (increases). An important consequence of ( 2 . 2 4 ~ ~ )  is that the conservation law 
(2.21) cannot be obtained. This result indicates the importance of knowing not only 
that N changes but also why it changes. 

A conservation law analogous to (2.21) may be obtained. If U = 0, then ( 2 . 2 4 ~ ~ )  
becomes 

dE E aN - + E V . C + -  - = 0. dt N at (2.24b) 

A well-known result from the kinematic wave theory (see, for example, Whitham 
1974, p. 383) is that 

dwpt  = afilat, (2.25) 

where in this case !2 = Nk/(k2 + m2)*. Then 

k aN dw 
dt (k2+m2)* at _ -  - 

and dividing both sides by w gives 

1 dw 1 aN --=-- 
w dt N at a 

(2.26) 

(2.27) 

Combination of (2.27) and (2.24b) yields the result 

a(wE)lat + V ( C ~ E )  = 0. (2.28) 

There is no claim of generality for (2.28), however it does seem to be the correct con- 
servation law under the circumstances. In  the next section an example of geophysical 
relevance and one where exact solutions are obtained is presented. 
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-4 -2 
NZ ( s - 2  x 1 0 4 )  

R G ~ E  1. The approximately forty-day average of Na(z ,  t ) .  -, 0000; - - -, 0300; - - ,0600; 
_._._ ,0900; --.--, 1200; - a * - ,  1500; -II-, 1800; * . * * * ,  2100. 

3. The nocturnal planetary boundary layer 
The nocturnal planetary boundary layer (NPBL) has N 2 ( z )  w 0 near sunset and 

N 2 ( z )  increasing thereafter. An idea of the typical height-time dependence of N 2  is 
gained by considering some climatological averages. 

The Wangara Experiment (Clarke et uZ. 1971) was used for this purpose because it 
possessed the advantages of having a high density of observations, flat terrain and 
moderately dry air. Although many atmospheric variables were measured, here 
attention is restricted to the temperature and pressure sounding made every three 
hours during the forty-day period. The measurement of temperature and pressure 
allows the calculation of potential temperature, which, in turn, allows the computation 
of N 2 .  

The number of computed profiles (approximately 8 x 40) is too large for all to be 
presented, however investigation of these profiles indicated that N 2  developed during 
the evening with marked regularity. In  view of this, the approximately forty-day 
average at each observation time (0000, 0300, 0600, 0900, 1200, 1600, 1800, 2100) is 
meaningful. The results of this calculation are shown in figure 1.  The graph indicates 
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that at 1200 the portion of the atmosphere closest to the ground is convectively un- 
stable ( N 2  < 0)) at higher altitudes the atmosphere is neutrally stable ( N  $: 0 )  and at  
even higher altitudes stability is achieved. Similar behaviour is noted for the mid- 
sounding (1500). The profile shows a very stable region close to the ground at  the 1800 
sounding, the stability decreasing with height and then increasing to the stability of 
the free atmosphere. Three hours later (2100), N 2  has doubled its 1800 value up to 
approximately 500 m, and little temporal change is observed above this height. There 
is very little time variation of N 2  between 2100 and 0600 and the 0900 sounding shows 
the previously stable region adjacent to the ground to be severely eroded. 

The most widely accepted explanation of the growth of the nocturnal inversion is 
that due to Blackadar (1957). He states, 

'Above a height of about a meter the rate of nocturnal cooling is too large to be 
accounted for by the radiational or conduction fluxes, and it is therefore evident 
that turbulent transfer is the chief control on the rate of upward propagation of 
the inversion surface. The cause of the turbulence lies in the large wind shear which 
develops within the inversion and which is capable of supplying sufficient turbulent 
energy to overcome the stability. ' 

That is, the wind-produced turbulence is sustained in such a manner as to produce 
enhanced transport yet is not of sufficient scale or intensity to destroy the inversion. 

Thus it appears that the proposed model is relevant to this situation. 

4. An analytical model 
The governing equations (2.5)-(2.9) are simplified by observing that the mean wind 

is mainly horizontal and a function of z only. The effect of wind shear on internal 
gravity waves, although important, is not germane to this analysis. Hence attention is 
confined to waves propagating perpendicular to the mean wind vector, since the waves 
are then ignorant of the mean wind. 

The governing equations are obtained by setting U = 0 in (2.5)-(2.9). The familiar 
procedure of combining these equations into a single equation for the vertical velocity 
is not affected by the time dependence of N2 (see, for example, Orlanski 1973). The 
result of this is 

where a/ay = 0 (without loss of generality). A functional form for N2(z, t )  which both 
allows analytical solutions and simulates well the observed behaviour is 

N2(z, t )  = .N2(t) N i  e-&lh, (4.2) 
where N2(t )  is dimensionless, Xi  is constant and h is the scale depth of N .  

Investigated here are perturbations introduced between the times 1500 and 2100. 
After 2100, N2 changes little and no variation of wave energy occurs (save for the 
effects of dissipation). The choice N 2  = at gives fair agreement with the observations, 
and allows analytical solutions. A more realistic choice is 1 - e-t/*, which gives linear 
increases at first which then taper off for t 2 7.  The analysis ends at sunrise with the 
beginning of severe thermal convection. Figure 2 displays a comparison between the 
linear N2(t) and the climatological profiles of figure 1. 
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FIGURE 2. Comparison of analytic expression and average Na from figure 1. 

The boundary conditions are that the vertical velocity should vanish at  the ground 
and at infinity, i.e. w(x, 0, t) = 0, w(x, m, t) = 0. (4.3) 
The vertical velocity and acceleration are initially specified as arbitraryt functions of 
x and z, i.e. 

(4.4) w(2,z, 0) = A(2 , z ) ,  8w(x,z ,  0 ) p t  = B(z,z). 
The explicit x dependence may be removed via Fourier transformation, and the 

result is that the problem specified by (4.1), (4.3) and (4.4) becomes 

subject to w(0, t) = 0, w(a, t) = 0 

and w(2,O) = A @ ) ,  8w(z, 0 ) p t  = B(z). 
t AE long as these are small enough for (4.1) to  be valid. 
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The particular specification (4.2) of N2(z ,  t )  allows the separation-of-variables 
procedure in (4.5). Let w(z, t )  = R(z) G(t) .  Then (4.5) becomes 

Division of (4.8) by e-%/hRa2G/8t2 yields 

Since the left-hand side is a function oft only and the right-hand side is a function of z 
only, each side must be a constant, - y2 ,  say. Thus the problem of solving the partial 
differential equation (4.5) is replaced by the problem of solving two ordinary differen- 
tial equations. 

Consider first the boundary-value problem 

R,, + ( y 2  e-2zih - k2) R = 0 (4.10) 

subject to R(0) = 0,  R(w) = 0. (4.11) 

The transformations ( = e-,ih and R(z) = a(C) and the definitions f = yh and ,% = kh 
convert (4.10) and (4.11) into 

(2LZCC + + ( p C 2  - @)a = 0 (4.12) 

and 9(1) = 0, LZ(0) = 0, 
respectively. 

The general solution to (4.12) is 

(4.13a,b) 

B(C> = c1 JZ(Y5) + c2 YZ(Y5), (4.14) 

where A(@.) and Y,(@) are Bessel functions of order v and argument I# and c1 and c2 are 
constants. Since q ( 0 )  is infinite, satisfaction of (4.13b) requires c2 = 0. Equation 
( 4 . 1 3 ~ )  is satisfied when 

J;(p,) = 0, n = 1,2 ,3 ,  ..., (4.15) 

where the 7, are the zeros of the Bessel function. The most general solution to (4.12) is 
thus 

(4.16) 

This solution represents waves guided between the ground and the vicinity of the 
turning point (hlnY,/k), i.e. the waves propagate horizontally in a modal structure. 
To obtain the time dependence of the modal amplitudes the equation resulting from 
the right-hand side of (4.9) is considered: 

(4.17) 

The orthogonality and completeness of the set of Bessel functions allow the initial 
conditions to be written as 

GJO) = &,legn, ac,(o)jat = gnjgn, (4.18) 
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where (4.19) 

Hence the general solution to (4.17) is 

aG2n aG1n + (Gln(0) 7 ( t )  - ~ 2 n ( o )  at ( 0 ) )  a n ] /  ~ [ ~ l n ( o ) ,  ~ 2 n ( 0 ) 1 9  (4.20) 

where W ( x ,  y) = Wronskian of (x, y) = (xy, -yx,),,,. 
A specific example is the case N 2 ( t )  = 2%. The general solution to (4.17) is 

Gln,zn(t) = (7') a&N * t*J=) (i ytt). 
Yn 

(4.21) 

The late-time behaviour of these solutions provides a consistency check on the results 
of $2. For large t ,  

Gln,zn - (4.22) 

a result which could have been obtained by direct application of the WKB approxima- 
tion to (4.17). The horizontal velocity exhibits the same time dependence since the 
time-varying N produces no changes in wavelength. Therefore the local period average 
of the kinetic energy behaves as t-4. The local period average of the potential energy 
behaves likewise. Hence the total energy exhibits a t-4 dependence. The local fre- 
quency is obtained by taking the time derivative of the cosine's argument: 

w, = (aEN,/Y,) t 4. (4.23) 

It is obvious that the product of the local energy density and frequency is constant. 
The wave energy should change only as long as N2 changes. A function 

N Z ( t )  = 1 - e-t/T 

is chosen to simulate the observed behaviour that after initial (first few hours) increases 
in N 2 ( z ,  t )  subsequent changes take place much more slowly. The general solution to 
(4.17) can be expressed in terms of modified Bessel functions of imaginary order. 
However, it is more convenient to consider the results of a numerical integration. 
Figure 3 displays two curves representing oscillations in the first and third modes (in 
both cases G ( 0 )  = 1 and G,(O) = 0).  The graph indicates that the higher-frequency 
oscillation is more susceptible to the effects of increasing stratification. Notice that 
just before t = 7 (4 h) the wave amplitudes and frequencies cease to be seriously 
modulated. 

5. Summary 
There exist a number of geophysical situations where the BruntVBisala frequency 

exhibits strong temporal variation. The cumulative effect of a periodically varying N2 
is instability of the wave motion (Orlanski 1973). However, local variations of N also 
affect the wave energy. 
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FIQURE 3. G(t) us. t .  -, n = 3; ---, n = 1. 

The asymptotic theory for slowly varying N2(t )  (Garrett 1968) was reviewed and 
certain aspects available from that analysis were emphasized. When N2(t )  varies 
owing to a certain type of irreversible process, the conservation law obtained is very 
different; it is found that the product of energy density and frequency is conserved. 

The NPBL is an example where this process could be important. The full initial/ 
boundary-value problem using an N2(z, t )  similar to some climatological means is 
presented and solved. 

The author would like to thank Dr Isidoro Orlanski for his advice and constructive 
criticism throughout the course of this study. Thanks are also due to Dr Stephen B. 
Fels for some helpful discussions. Support for this work was provided by NSF Grant 
number GA-40048. 
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